

General Description

The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating voltage ranges from +2.5V to +5.5V, making them ideal for both 3V and 5V systems. These comparators also operate with $\pm 1.25V$ to $\pm 2.75V$ dual supplies. They consume only 48µA per comparator while achieving a 120ns propagation delay.

Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals.

The output stage's unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output stage that sinks as well as sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8mA. The MAX988/MAX992/MAX996 have an open-drain output stage that can be pulled beyond VCC to 6V (max) above VFF. These open-drain versions are ideal for level translators and bipolar to singleended converters.

The single MAX987/MAX988 are available in tiny 5-pin SC70 packages, while the dual MAX991/MAX992 are available in ultra-small 8-pin SOT23 and µMAX® packages.

Selector Guide

PART	COMPARATORS PER PACKAGE	OUTPUT STAGE		
MAX987	1	Push-Pull		
MAX988	1	Open-Drain		
MAX991	2	Push-Pull		
MAX992	2	Open-Drain		
MAX995	4	Push-Pull		
MAX996	4	Open-Drain		

Applications

Threshold Detectors/ Portable/Battery-Powered Systems Discriminators

Mobile Communications Ground/Supply Sensing

Zero-Crossing Detectors IR Receivers

Window Comparators Digital Line Receivers

Level Translators

µMAX is a registered trademark of Maxim Integrated Products,

Features

- ♦ 120ns Propagation Delay
- ♦ 48µA Quiescent Supply Current
- ♦ +2.5V to +5.5V Single-Supply Operation
- ♦ Common-Mode Input Voltage Range Extends 250mV Beyond the Rails
- ♦ Push-Pull Output Stage Sinks and Sources 8mA Current (MAX987/MAX991/MAX995)
- ♦ Open-Drain Output Voltage Extends Beyond Vcc (MAX988/MAX992/MAX996)
- ◆ Unique Output Stage Reduces Output Switching **Current, Minimizing Overall Power Consumption**
- ♦ 100µA Supply Current at 1MHz Switching Frequency
- ♦ No Phase Reversal for Overdriven Inputs
- Available in Space-Saving Packages: 5-Pin SOT23 (MAX987/MAX988) 8-Pin µMAX (MAX991/MAX992)

Ordering Information

PART	PIN-PACKAGE	PKG CODE	TOP MARK	
MAX987EXK-T	5 SC70-5	X5-1	ABM	
MAX987EUK-T	5 SOT23-5	U5-1	ABZB	
MAX987ESA	8 SO	S8-2	_	

Ordering Information continued at end of data sheet.

Note: All devices specified over the -40°C to +85°C operating temperature range.

Typical Application Circuit appears at end of data sheet.

Pin Configurations

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)	6V
IN, IN_+ to VEE	0.3V to (Vcc + 0.3V)
Current into Input Pins	±20mÅ
OUT_ to VEE	
MAX987/MAX991/MAX995	0.3V to (Vcc + 0.3V)
MAX988/MAX992/MAX996	0.3V to +6V
OUT_ Short-Circuit Duration to VE	E or VCC10s
Continuous Power Dissipation (TA	$A = +70^{\circ}C$
5-Pin SC70 (derate 3.1mW/°C a	bove +70°C)247mW

5-Pin SOT23 (derate 7.10mW/°C above +7	70°C)571mW
8-Pin SOT23 (derate 9.1mW/°C above +70	
8-Pin SO (derate 5.88mW/°C above +70°C	C)471mW
8-Pin µMAX (derate 4.5mW/°C above +70°	°C)362mW
14-Pin TSSOP (derate 9.1mW/°C above +	
14-Pin SO (derate 8.33mW/°C above +70°	°C)667mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 1)

 $(V_{CC} = +2.7 \text{V to } +5.5 \text{V}, V_{EE} = 0 \text{V}, V_{CM} = 0 \text{V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_{A} = +25 ^{\circ}\text{C}.)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS	
Supply Voltage	Vcc	Inferred from PSRR test			2.5		5.5	V	
Cumply Current ner		$V_{CC} = 5V$ $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				53	80 96		
Supply Current per Comparator	Icc	V _{CC} = 2.7V	T _A =	= +25°C		48	80	μA	
Power-Supply Rejection Ratio	PSRR	2.5V ≤ V _{CC} ≤ 5.5V		= -40°C to +85°C	55	80	96	dB	
Power-Supply Rejection Ratio	Ponn	2.5 ∨ ≤ ∨ ∪ ∪ ≤ 5.5 ∨				00		иь	
Common-Mode Voltage Range (Note 2)	V _{CMR}	T _A = +25°C			V _{EE} - 0.25		Vcc + 0.25	V	
Trange (Note 2)		$T_A = -40^{\circ}C \text{ to } +85$	°C		VEE		Vcc		
Input Offset Voltage	Vos	Full common-mod	e T _A =	= +25°C		±0.5	±5	ma\/	
(Note 3)	V05	range	T _A =	= -40°C to +85°C			±7	- mV	
Input Hysteresis	VHYST	,			±2.5		mV		
Input Bias Current (Note 4)	IB					0.001	10	nA	
Input Offset Current	los					0.5		рА	
Input Capacitance	CIN					1.0		рF	
Common-Mode Rejection Ratio	CMRR				50	80		dB	
Output Leakage Current (MAX988/MAX992/ MAX996 only)	ILEAK	V _{OUT} = high					1.0	μА	
Output Short-Circuit Current	Isc	Sourcing or sinking				95		mA	
Output Short-Circuit Current		Vout = VEE or Vo	0	$V_{CC} = 2.7V$		35] ""	
		Vcc = 5V,	TA = +25°	T _A = +25°C		0.2	0.4	V	
OUT Output-Voltage Low	VoL	ISINK = 8mA	$T_A = -40$ °C to $+85$ °C				0.55		
		VCC = 2.7V, ISINK = 3.5mA	T _A = +25°C			0.15	0.3		
			T _A = -40°	C to +85°C			0.4		
	Vон	$V_{CC} = 5V$,	T _A = +25°C		4.6	4.85			
OUT Output-Voltage High (MAX987/MAX991/		ISOURCE = 8mA	$T_A = -40$ °C to $+85$ °C		4.45			V	
MAX995 Only)		Vcc = 2.7V,	T _A = +25°C		2.4	2.55			
		ISOURCE = 3.5mA	$T_A = -40$ °C to $+85$ °C		2.3				

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7V \text{ to } +5.5V, V_{EE} = 0V, V_{CM} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.$)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS		
OUT Rise Time				C _L =	15pF		15			
(MAX987/MAX991/	trise	Vcc = 5.0V		C _L =	$C_L = 50pF$		20		ns	
MAX995 Only)				C _L =	200pF		40			
		V _{CC} = 5.0V		C _L =	15pF		15			
OUT Fall Time	tfall			$C_L = 50pF$			20		ns	
				C _L =	C _L = 200pF		40			
		C _L = 15pF, V _{CC} = 5V	MAX987/MAX991/		10mV overdrive		210			
			MAX995 onl	У	100mV overdrive		120			
Propagation Delay	t _{PD-}		MAX988/MAX992/ MAX996 only.		10mV overdrive		210		ns	
			RPULLUP = 5	, ,	100mV overdrive		120		110	
	ton	MAX987/MAX991/MAX99 only, $C_L = 15pF$, $V_{CC} = 5$		95	10mV overdrive		210			
	t _{PD+}			5V	100mV overdrive		120			
Power-Up Time	tpU						25		μs	

Note 1: All device specifications are 100% production tested at T_A = +25°C. Limits over the extended temperature range are guaranteed by design, not production tested.

Note 2: Inferred from the V_{OS} test. Either or both inputs can be driven 0.3V beyond either supply rail without output phase reversal.

Note 3: Vos is defined as the center of the hysteresis band at the input.

Note 4: I_B is defined as the average of the two input bias currents (I_{B-} , I_{B+}).

Typical Operating Characteristics

(V_{CC} = +5V, V_{CM} = 0V, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{CM} = 0V, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

(VCC = +5V, VCM = 0V, TA = +25°C, unless otherwise noted.)

MAX987/MAX988/MAX991/MAX992/MAX995/MAX996

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Pin Description

	P	PIN				
KAM KAM		MAX991 MAX996	MAX995 MAX996	NAME	FUNCTION	
SOT23/ SC70	so	SO/µMAX/ SOT23	SO/ TSSOP			
1	6	_	_	OUT	Comparator Output	
2	7	8	4	Vcc	Positive Supply Voltage	
3	3	_	_	IN+	Comparator Noninverting Input	
4	2	_	_	IN-	Comparator Inverting Input	
5	4	4	11	VEE	Negative Supply Voltage	
_	_	1	1	OUTA	Comparator A Output	
_	_	2	2	INA-	Comparator A Inverting Input	
_	_	3	3	INA+	Comparator A Noninverting Input	
_	_	5	5	INB+	Comparator B Noninverting Input	
_	_	6	6	INB-	Comparator B Inverting Input	
_	_	7	7	OUTB	Comparator B Output	
_	_	_	8	OUTC	Comparator C Output	
_	_	_	9	INC-	Comparator C Inverting Input	
_	_	_	10	INC+	Comparator C Noninverting Input	
_	_	_	12	IND+	Comparator D Noninverting Input	
_	_	_	13	IND-	Comparator D Inverting Input	
_	_	_	14	OUTD	Comparator D Output	
	1, 5, 8	_	_	N.C.	No Connection. Not internally connected.	

Detailed Description

The MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between +2.5V and +5.5V and consume only 48µA per comparator, while achieving 120ns propagation delay. Their common-mode input voltage range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-to-rail output swing with up to 8mA loads.

The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output structure that sinks as well as sources current. The MAX988/MAX992/MAX996 have an opendrain output stage that can be pulled beyond VCC to an absolute maximum of 6V above VEE.

Input Stage Circuitry

The devices' input common-mode range extends from -0.25V to (V_{CC} + 0.25V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.

Output Stage Circuitry

These comparators contain a unique output stage capable of rail-to-rail operation with up to 8mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The *Typical Operating Characteristics* Supply Current vs. Output Transition Frequency graph shows the minimal supply-current increase as the output switching frequency approaches 1MHz. This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Battery life increases substantially in high-speed, battery-powered applications.

Applications Information

Additional Hysteresis

MAX987/MAX991/MAX995

The MAX987/MAX991/MAX995 have ±2.5mV internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX987/MAX991/MAX995.

- 1) Select R3. Leakage current at IN is under 10nA; therefore, the current through R3 should be at least 1µA to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF-VOUT) / R3. Considering the two possible output states and solving for R3 yields two formulas: R3 = VREF / 1µA or R3 = (VREF VCC) / 1µA. Use the smaller of the two resulting resistor values. For example, if VREF = 1.2V and VCC = 5V, then the two R3 resistor values are 1.2M Ω and 3.8M Ω . Choose a 1.2M Ω standard value for R3.
- 2) Choose the hysteresis band required (V_{HB}). For this example, choose 50mV.
- 3) Calculate R1 according to the following equation:

$$R1 = R3 \times (V_{HB} / V_{CC})$$

For this example, insert the values R1 = $1.2M\Omega \times (50mV / 5V) = 12k\Omega$.

4) Choose the trip point for V_{IN} rising (V_{THR}; V_{THF} is the trip point for V_{IN} falling). This is the threshold voltage at which the comparator switches its output from low to high as V_{IN} rises above the trip point. For this example, choose 3V.

Figure 1. Additional Hysteresis (MAX987/MAX991/MAX995)

5) Calculate R2 as shown. For this example, choose an $8.2k\Omega$ standard value:

$$R2 = \frac{1}{\left(\frac{V_{THR}}{V_{REF} \times R1}\right) - \frac{1}{R1} - \frac{1}{R3}}$$

$$R2 = \frac{1}{\left(\frac{3.0V}{1.2 \times 12k\Omega}\right) - \frac{1}{12k\Omega} - \frac{1}{2.2M\Omega}} = 8.03k\Omega$$

6) Verify trip voltages and hysteresis as follows:

$$\begin{split} &V_{IN} \text{ rising: } V_{THR} = V_{REF} \times R1 \times \left(\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}\right) \\ &V_{IN} \text{ falling: } V_{THF} = V_{THR} - \left(\frac{R1 \times V_{CC}}{R3}\right) \\ &Hysteresis = V_{THR} - V_{THF} \end{split}$$

MAX988/MAX992/MAX996

The MAX988/MAX992/MAX996 have ±2.5mV internal hysteresis. They have open-drain outputs and require an external pullup resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX987/MAX991/MAX995.

Figure 2. Additional Hysteresis (MAX988/MAX992/MAX996)

Use the following procedure to calculate resistor values:

- 1) Select R3 according to the formulas R3 = $V_{REF} / 1\mu A$ or R3 = $(V_{REF} V_{CC}) / 1\mu A$ R4. Use the smaller of the two resulting resistor values.
- 2) Choose the hysteresis band required (VHB). For this example, choose 50mV.
- 3) Calculate R1 according to the following equation:

$$R1 = (R3 + R4) \times (V_{HB} / V_{CC})$$

- 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point.
- 5) Calculate R2 as follows:

$$R2 = \frac{1}{\left(\frac{V_{THR}}{V_{RFF} \times R1}\right) - \frac{1}{R1} - \frac{1}{R3 + R4}}$$

6) Verify trip voltages and hysteresis as follows:

$$V_{IN} \text{ rising: } V_{THR} = V_{REF} \times R1 \times \\ \left(\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3 + R4}\right)$$

$$V_{IN} \text{ falling: } V_{THF} = V_{THR} - \left(\frac{R1 \times V_{CC}}{R3 + R4}\right)$$

$$Hysteresis = V_{THR} - V_{THF}$$

Circuit Layout and Bypassing

These comparators' high-gain bandwidth requires design precautions to maximize their high-speed capability. The recommended precautions are:

- 1) Use a PCB with an unbroken, low-inductance ground plane.
- Place a decoupling capacitor (a 0.1µF ceramic capacitor is a good choice) as close to V_{CC} as possible.
- On the inputs and outputs, keep lead lengths short to avoid unwanted parasitic feedback around the comparators.
- Solder the devices directly to the PCB instead of using a socket.

Zero-Crossing Detector

Figure 3 shows a zero-crossing detector application. The MAX987's inverting input is connected to ground, and its noninverting input is connected to a 100mVp-p signal source. As the signal at the noninverting input crosses 0V, the comparator's output changes state.

Logic-Level Translator

Figure 4 shows an application that converts 5V logic levels to 3V logic levels. The MAX988 is powered by the +5V supply voltage, and the pullup resistor for the MAX988's open-drain output is connected to the +3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translation, simply connect the +3V supply to VCC and the +5V supply to the pullup resistor.

Figure 3. Zero-Crossing Detector

Figure 4. Logic-Level Translator

Pin Configurations (continued)

Typical Application Circuit

V_{IN} V_{CC} V_{IN} V_{CC} V_{REF} V_{CC} *R_{PULLUP} *R_{PULLUP} *R_{PULLUP} *R_{PULLUP} *MAX98_ MAX99_ V_{EE} *MAX988/MAX992/MAX996 ONLY THRESHOLD DETECTOR

__Ordering Information (continued)

PART	PIN-PACKAGE	PKG CODE	TOP MARK
MAX988EXK-T	5 SC70-5	X5-1	ABN
MAX988EUK-T	5 SOT23-5	U5-1	ABZC
MAX988ESA	8 SO	S8-2	_
MAX991EKA-T	8 SOT23-8	K8-5	AAEB
MAX991EUA-T	8 μMAX-8	U8-1	_
MAX991ESA	8 SO	S8-2	_
MAX992EKA-T	8 SOT23-8	K8-5	AAEC
MAX992EUA-T	8 μMAX-8	U8-1	_
MAX992ESA	8 SO	S8-2	_
MAX995EUD	14 TSSOP	U14-1	_
MAX995ESD	14 SO	S14-4	_
MAX996EUD	14 TSSOP	U14-1	_
MAX996ESD	14 SO	S14-4	_

Note: All devices specified over the -40°C to +85°C operating temperature range.

Tape-and-Reel Information

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

_Revision History

Pages changed at Rev 2: 1-6, 8-13

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600