High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

General Description

The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating voltage ranges from +2.5 V to +5.5 V , making them ideal for both 3 V and 5 V systems. These comparators also operate with $\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ dual supplies. They consume only $48 \mu \mathrm{~A}$ per comparator while achieving a 120ns propagation delay.
Input bias current is typically 1.0pA, and input offset voltage is typically 0.5 mV . Internal hysteresis ensures clean output switching, even with slow-moving input signals.
The output stage's unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output stage that sinks as well as sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8mA. The MAX988/MAX992/MAX996 have an open-drain output stage that can be pulled beyond VCc to 6V (max) above VEE. These open-drain versions are ideal for level translators and bipolar to singleended converters.

The single MAX987/MAX988 are available in tiny 5-pin SC70 packages, while the dual MAX991/MAX992 are available in ultra-small 8-pin SOT23 and $\mu \mathrm{MAX}{ }^{\circledR}$ packages

Selector Guide

PART	COMPARATORS PER PACKAGE	OUTPUT STAGE
MAX987	1	Push-Pull
MAX988	1	Open-Drain
MAX991	2	Push-Pull
MAX992	2	Open-Drain
MAX995	4	Push-Pull
MAX996	4	Open-Drain

Applications

Portable/Battery-
Powered Systems
Mobile Communications
Zero-Crossing Detectors
Window Comparators Level Translators

Threshold Detectors/ Discriminators
Ground/Supply Sensing
IR Receivers
Digital Line Receivers
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

- 120ns Propagation Delay
- $48 \mu \mathrm{~A}$ Quiescent Supply Current
- +2.5V to +5.5V Single-Supply Operation
- Common-Mode Input Voltage Range Extends 250mV Beyond the Rails
- Push-Pull Output Stage Sinks and Sources 8mA Current (MAX987/MAX991/MAX995)
- Open-Drain Output Voltage Extends Beyond Vcc (MAX988/MAX992/MAX996)
- Unique Output Stage Reduces Output Switching Current, Minimizing Overall Power Consumption
- 100 1 A Supply Current at 1 MHz Switching Frequency
- No Phase Reversal for Overdriven Inputs
- Available in Space-Saving Packages:

5-Pin SOT23 (MAX987/MAX988)
8-Pin μ MAX (MAX991/MAX992)
Ordering Information

PART	PIN-PACKAGE	PKG CODE	TOP MARK
MAX987EXK-T	5 SC70-5	$\times 5-1$	ABM
MAX987EUK-T	5 SOT23-5	$\mathrm{U5-1}$	ABZB
MAX987ESA	8 SO	S8-2	-

Ordering Information continued at end of data sheet.
Note: All devices specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
Typical Application Circuit appears at end of data sheet.
Pin Configurations

Pin Configurations continued at end of data sheet.

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Abstract

5-Pin SOT23 (derate $7.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 571 mW 8 -Pin SOT23 (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW 8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................. 471 mW 8 -Pin $\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 362 mW 14-Pin TSSOP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW 14 -Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............... 667 mW Operating Temperature Range $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s). \qquad $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 1)

$\left(\mathrm{VCC}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V} C M=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Supply Voltage	Vcc	Inferred from PSRR test		2.5	5.5	V
Supply Current per Comparator	ICC	$V_{C C}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	53	80	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		96	
		$V_{C C}=2.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	48	80	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		96	
Power-Supply Rejection Ratio	PSRR	$2.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$		5580		dB
Common-Mode Voltage Range (Note 2)	VCMR	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{aligned} & \hline \text { VEE - } \\ & 0.25 \end{aligned}$	$\begin{gathered} \text { VCC + } \\ 0.25 \end{gathered}$	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		VEE	VCC	
Input Offset Voltage (Note 3)	Vos	Full common-mode range	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	± 0.5	± 5	mV
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 7	
Input Hysteresis	VHYST			± 2.5		mV
Input Bias Current (Note 4)	IB			0.001	10	nA
Input Offset Current	los			0.5		pA
Input Capacitance	CIN			1.0		pF
Common-Mode Rejection Ratio	CMRR			5080		dB
Output Leakage Current (MAX988/MAX992/ MAX996 only)	ILEAK	VOUT $=$ high			1.0	$\mu \mathrm{A}$
Output Short-Circuit Current	Isc	Sourcing or sinking, Vout $=$ VEE or VCC	, $\quad \mathrm{VCC}=5 \mathrm{~V}$	95		mA
			VCC $=2.7 \mathrm{~V}$	35		
OUT Output-Voltage Low	Vol	$\begin{aligned} & \mathrm{VCC}=5 \mathrm{~V}, \\ & \mathrm{ISINK}=8 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.2	0.4	V
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.55	
		$\begin{aligned} & \mathrm{VCC}=2.7 \mathrm{~V}, \\ & \mathrm{ISINK}=3.5 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.15	0.3	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.4	
OUT Output-Voltage High (MAX987/MAX991/ MAX995 Only)	VOH	$\begin{aligned} & \mathrm{VCC}=5 \mathrm{~V}, \\ & \text { ISOURCE }=8 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4.64 .85		V
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4.45		
		$\begin{aligned} & \mathrm{VCC}=2.7 \mathrm{~V} \\ & \text { ISOURCE }=3.5 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2.42 .55		
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.3		

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V} C M=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

Note 1: All device specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the extended temperature range are guaranteed by design, not production tested.
Note 2: Inferred from the Vos test. Either or both inputs can be driven 0.3 V beyond either supply rail without output phase reversal.
Note 3: $V_{O S}$ is defined as the center of the hysteresis band at the input.
Note 4: I_{B} is defined as the average of the two input bias currents ($\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}$).

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)
Typical Operating Characteristics

OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT

OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

PROPAGATION DELAY vs. INPUT OVERDRIVE

MAX987/MAX991/MAX995 PROPAGATION DELAY (tpd +)

MAX987/MAX991/MAX995 SWITCHING CURRENT, OUT RISING

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Pin Description

PIN				NAME	FUNCTION
MAX987 MAX988		MAX991 MAX996	MAX995 MAX996		
$\begin{gathered} \text { SOT23/ } \\ \text { SC70 } \end{gathered}$	SO	$\begin{aligned} & \text { SO/ } \mu \mathrm{MAX/} \\ & \text { SOT23 } \end{aligned}$	$\begin{gathered} \text { SO/ } \\ \text { TSSOP } \end{gathered}$		
1	6	-	-	OUT	Comparator Output
2	7	8	4	VCC	Positive Supply Voltage
3	3	-	-	$\mathrm{IN}+$	Comparator Noninverting Input
4	2	-	-	IN-	Comparator Inverting Input
5	4	4	11	$V_{\text {EE }}$	Negative Supply Voltage
-	-	1	1	OUTA	Comparator A Output
-	-	2	2	INA-	Comparator A Inverting Input
-	-	3	3	INA+	Comparator A Noninverting Input
-	-	5	5	INB+	Comparator B Noninverting Input
-	-	6	6	INB-	Comparator B Inverting Input
-	-	7	7	OUTB	Comparator B Output
-	-	-	8	OUTC	Comparator C Output
-	-	-	9	INC-	Comparator C Inverting Input
-	-	-	10	INC+	Comparator C Noninverting Input
-	-	-	12	IND+	Comparator D Noninverting Input
-	-	-	13	IND-	Comparator D Inverting Input
-	-	-	14	OUTD	Comparator D Output
-	1, 5, 8	-	-	N.C.	No Connection. Not internally connected.

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Detailed Description

The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between +2.5 V and +5.5 V and consume only $48 \mu \mathrm{~A}$ per comparator, while achieving 120 ns propagation delay. Their common-mode input voltage range extends 0.25 V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-torail output swing with up to 8 mA loads.
The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output structure that sinks as well as sources current. The MAX988/MAX992/MAX996 have an opendrain output stage that can be pulled beyond VCC to an absolute maximum of 6 V above V_{EE}.

Input Stage Circuitry

The devices' input common-mode range extends from -0.25 V to (Vcc +0.25 V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0 pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.

Output Stage Circuitry

These comparators contain a unique output stage capable of rail-to-rail operation with up to 8 mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The Typical Operating Characteristics Supply Current vs. Output Transition Frequency graph shows the minimal supply-current increase as the output switching frequency approaches 1 MHz . This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Battery life increases substantially in high-speed, battery-powered applications.

Applications Information

Additional Hysteresis

MAX987/MAX991/MAX995
The MAX987/MAX991/MAX995 have $\pm 2.5 \mathrm{mV}$ internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX987/MAX991/MAX995.

1) Select R3. Leakage current at $I N$ is under 10nA; therefore, the current through R3 should be at least $1 \mu \mathrm{~A}$ to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF Vout) / R3. Considering the two possible output states and solving for R3 yields two formulas: R3 = VREF / $1 \mu \mathrm{~A}$ or $\mathrm{R} 3=\left(\mathrm{V}_{\text {REF }}-\mathrm{VCC}\right) / 1 \mu \mathrm{~A}$. Use the smaller of the two resulting resistor values. For example, if $\mathrm{V}_{\text {REF }}=1.2 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$, then the two R3 resistor values are $1.2 \mathrm{M} \Omega$ and $3.8 \mathrm{M} \Omega$. Choose a $1.2 \mathrm{M} \Omega$ standard value for R3.
2) Choose the hysteresis band required (VHB). For this example, choose 50 mV .
3) Calculate R1 according to the following equation:

$$
\mathrm{R} 1=\mathrm{R} 3 \times\left(\mathrm{V}_{\mathrm{HB}} / \mathrm{V}_{\mathrm{CC}}\right)
$$

For this example, insert the values $\mathrm{R} 1=1.2 \mathrm{M} \Omega \times$ $(50 \mathrm{mV} / 5 \mathrm{~V})=12 \mathrm{k} \Omega$.
4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V.

Figure 1. Additional Hysteresis (MAX987/MAX991/MAX995)

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

5) Calculate R2 as shown. For this example, choose an $8.2 \mathrm{k} \Omega$ standard value:

$$
\begin{aligned}
\mathrm{R} 2 & =\frac{1}{\left(\frac{\mathrm{~V}_{\mathrm{THR}}}{\mathrm{~V}_{\mathrm{REF}} \times \mathrm{R} 1}\right)-\frac{1}{\mathrm{R} 1}-\frac{1}{\mathrm{R} 3}} \\
\mathrm{R} 2 & =\frac{1}{\left(\frac{3.0 \mathrm{~V}}{1.2 \times 12 \mathrm{k} \Omega}\right)-\frac{1}{12 \mathrm{k} \Omega}-\frac{1}{2.2 \mathrm{M} \Omega}}=8.03 \mathrm{k} \Omega
\end{aligned}
$$

6) Verify trip voltages and hysteresis as follows:

$$
\begin{aligned}
& V_{I N} \text { rising: } V_{T H R}=V_{R E F} \times R 1 \times\left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}\right) \\
& V_{I N} \text { falling: } V_{T H F}=V_{T H R}-\left(\frac{R 1 \times V_{C C}}{R 3}\right) \\
& \text { Hysteresis }=V_{T H R}-V_{T H F}
\end{aligned}
$$

MAX988/MAX992/MAX996

The MAX988/MAX992/MAX996 have $\pm 2.5 \mathrm{mV}$ internal hysteresis. They have open-drain outputs and require an external pullup resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX987/MAX991/MAX995.

Figure 2. Additional Hysteresis (MAX988/MAX992/MAX996)

Use the following procedure to calculate resistor values:

1) Select $R 3$ according to the formulas $R 3=V_{\text {REF }} / 1 \mu A$ or R3 $=($ VREF -VCC$) / 1 \mu \mathrm{~A}-\mathrm{R} 4$. Use the smaller of the two resulting resistor values.
2) Choose the hysteresis band required (V_{HB}). For this example, choose 50 mV .
3) Calculate R1 according to the following equation:

$$
R 1=(R 3+R 4) \times\left(V_{H B} / V_{C C}\right)
$$

4) Choose the trip point for V_{IN} rising ($\mathrm{V}_{\text {THR }}$; $\mathrm{V}_{\mathrm{THF}}$ is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point.
5) Calculate R2 as follows:

$$
R 2=\frac{1}{\left(\frac{V_{T H R}}{V_{R E F} \times R 1}\right)-\frac{1}{R 1}-\frac{1}{R 3+R 4}}
$$

6) Verify trip voltages and hysteresis as follows:

$$
\begin{aligned}
& V_{I N} \text { rising: } V_{T H R}=V_{R E F} \times R 1 \times \\
& \left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3+R 4}\right) \\
& V_{I N} \text { falling: } V_{T H F}=V_{T H R}-\left(\frac{R 1 \times V_{C C}}{R 3+R 4}\right) \\
& \text { Hysteresis }=V_{T H R}-V_{T H F}
\end{aligned}
$$

Circuit Layout and Bypassing
These comparators' high-gain bandwidth requires design precautions to maximize their high-speed capability. The recommended precautions are:

1) Use a PCB with an unbroken, low-inductance ground plane.
2) Place a decoupling capacitor (a $0.1 \mu \mathrm{~F}$ ceramic capacitor is a good choice) as close to VCC as possible.
3) On the inputs and outputs, keep lead lengths short to avoid unwanted parasitic feedback around the comparators.
4) Solder the devices directly to the PCB instead of using a socket.

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Zero-Crossing Detector

Figure 3 shows a zero-crossing detector application. The MAX987's inverting input is connected to ground, and its noninverting input is connected to a $100 \mathrm{mVp}-\mathrm{p}$ signal source. As the signal at the noninverting input crosses 0 V , the comparator's output changes state.

Figure 3. Zero-Crossing Detector

Logic-Level Translator
Figure 4 shows an application that converts 5 V logic levels to 3 V logic levels. The MAX988 is powered by the +5 V supply voltage, and the pullup resistor for the MAX988's open-drain output is connected to the +3 V supply voltage. This configuration allows the full 5 V logic swing without creating overvoltage on the 3 V logic inputs. For 3 V to 5 V logic-level translation, simply connect the +3 V supply to V_{CC} and the +5 V supply to the pullup resistor.

Figure 4. Logic-Level Translator

TOP VIEW

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

Typical Application Circuit

__Ordering Information (continued)

PART	PIN-PACKAGE	$\begin{gathered} \hline \text { PKG } \\ \text { CODE } \end{gathered}$	TOP MARK
MAX988EXK-T	5 SC70-5	X5-1	ABN
MAX988EUK-T	5 SOT23-5	U5-1	ABZC
MAX988ESA	8 SO	S8-2	-
MAX991EKA-T	8 SOT23-8	K8-5	AAEB
MAX991EUA-T	8 MMAX-8	U8-1	-
MAX991ESA	8 SO	S8-2	-
MAX992EKA-T	8 SOT23-8	K8-5	AAEC
MAX992EUA-T	$8 \mu \mathrm{MAX}$-8	U8-1	-
MAX992ESA	8 SO	S8-2	-
MAX995EUD	14 TSSOP	U14-1	-
MAX995ESD	14 SO	S14-4	-
MAX996EUD	14 TSSOP	U14-1	-
MAX996ESD	14 SO	S14-4	-

Note: All devices specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

NOTE: DIMENSIONS ARE IN MM. AND FOLLOW EIA481-1 STANDARD.

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Pages changed at Rev 2: 1-6, 8-13
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.

PROPRIETARY INFORMATION

PACKAGE OUTLINE, 8L uMAX/uSOP
4. MEETS JEDEC MO-187C-AA.

APRROVAL	$21-0036$	J	$1 / 1$

